1,729 research outputs found

    Maximum Torque Per Ampere Control Strategy of a 5-phase PM Generator in healthy and faulty modes for tidal marine turbine application

    Get PDF
    The work presented in this paper aims to propose a control strategy being able to extract efficiently energy from a fixed-pitch marine current turbine associated with a 5–phase Permanent Magnet Synchronous Generator (PMSG) in healthy mode and in faulty mode. The considered faults are opened phases. For each tidal current speed, the control strategy aims to extract the maximum power with respect of the maximum values of currents and voltages related to the converter. The maximum power is directly related to the Maximum Torque per Ampere (MTPA) control strategy characteristics (all the points which are below the MTPA torque VS rotating speed characteristic can be reached by the converter/generator set). This paper proposes a methodology to establish MTPA characteristics and calculate the corresponding current references in healthy mode and in faulty mode (one or two opened phases) for a 5-phase generator. The studied strategy includes flux weakening operations in the both modes.financement CIFRE Jeumont-Electric Altawes

    Analysis of glycolipids in vegetable lecithin with HPLC-ELSD

    Get PDF
    Vegetable lecithins play an important role in the microstructural and macroscopic properties of food and cosmetic products. They are widely used as a natural emulsifier. As lecithin is a by-product of the vegetable oil refining industry, its composition is quite variable and rather complex. Therefore, a more complete view on the chemical composition of lecithin would assist in elucidating its functionality. This study focused on the separation and quantification of several glycolipid classes in lecithin, namely (1) digalactosyldiacylglycerol (DGDG) and monogalactosyldiacylglycerol (MGDG), (2) steryl glucosides, (3) esterified steryl glucosides and (4) cerebrosides, using HPLC-ELSD. MGDG was not detected in soy lecithin

    SLA-aware virtual resource management for cloud infrastructures

    Get PDF
    International audienceCloud platforms host several independent applications on a shared resource pool with the ability to allocate computing power to applications on a per-demand basis. The use of server virtualization techniques for such platforms provide great flexibility with the ability to consolidate several virtual machines on the same physical server, to resize a virtual machine capacity and to migrate virtual machine across physical servers. A key challenge for cloud providers is to automate the management of virtual servers while taking into account both high-level QoS requirements of hosted applications and resource management costs. This paper proposes an autonomic resource manager to control the virtualized environment which decouples the provisioning of resources from the dynamic placement of virtual machines. This manager aims to optimize a global utility function which integrates both the degree of SLA fulfillment and the operating costs. We resort to a Constraint Programming approach to formulate and solve the optimization problem. Results obtained through simulations validate our approach

    TRIPILLAR: a miniature magnetic caterpillar climbing robot with plane transition ability

    Get PDF
    We present a miniature magnetic climbing robot with dimensions 96 × 46 × 64 mm3. With two degrees of freedom it is able to climb ferromagnetic surfaces and to make inner plane to plane transitions whatever their inclination is. This robot, named TRIPILLAR, combines triangular-shaped magnetic caterpillars and frame magnets. This particular configuration allows, for example, to move from ground to wall and ceiling and back. This achievement opens new avenues to use mobile robotics for industrial inspection with stringent size restrictions, such as the ones encountered in power plant

    Provably Secure Group Signature Schemes from Code-Based Assumptions

    Full text link
    We solve an open question in code-based cryptography by introducing two provably secure group signature schemes from code-based assumptions. Our basic scheme satisfies the CPA-anonymity and traceability requirements in the random oracle model, assuming the hardness of the McEliece problem, the Learning Parity with Noise problem, and a variant of the Syndrome Decoding problem. The construction produces smaller key and signature sizes than the previous group signature schemes from lattices, as long as the cardinality of the underlying group does not exceed 2242^{24}, which is roughly comparable to the current population of the Netherlands. We develop the basic scheme further to achieve the strongest anonymity notion, i.e., CCA-anonymity, with a small overhead in terms of efficiency. The feasibility of two proposed schemes is supported by implementation results. Our two schemes are the first in their respective classes of provably secure groups signature schemes. Additionally, the techniques introduced in this work might be of independent interest. These are a new verifiable encryption protocol for the randomized McEliece encryption and a novel approach to design formal security reductions from the Syndrome Decoding problem.Comment: Full extension of an earlier work published in the proceedings of ASIACRYPT 201

    An acto-myosin II constricting ring initiates the fission of activity-dependent bulk endosomes in neurosecretory cells

    Get PDF
    Activity-dependent bulk endocytosis allows neurons to internalize large portions of the plasma membrane in response to stimulation. However, whether this critical type of compensatory endocytosis is unique to neurons or also occurs in other excitable cells is currently unknown. Here we used fluorescent 70 kDa dextran to demonstrate that secretagogue-induced bulk endocytosis also occurs in bovine chromaffin cells. The relatively large size of the bulk endosomes found in this model allowed us to investigate how the neck of the budding endosomes constricts to allow efficient recruitment of the fission machinery. Using time-lapse imaging of Lifeact–GFP-transfected chromaffin cells in combination with fluorescent 70 kDa dextran, we detected acto-myosin II rings surrounding dextran-positive budding endosomes. Importantly, these rings were transient and contracted before disappearing, suggesting that they might be involved in restricting the size of the budding endosome neck. Based on the complete recovery of dextran fluorescence after photobleaching, we demonstrated that the actin ring-associated budding endosomes were still connected with the extracellular fluid. In contrast, no such recovery was observed following the constriction and disappearance of the actin rings, suggesting that these structures were pinched-off endosomes. Finally, we showed that the rings were initiated by a circular array of phosphatidylinositol(4,5)bisphosphate microdomains, and that their constriction was sensitive to both myosin II and dynamin inhibition. The acto-myosin II rings therefore play a key role in constricting the neck of budding bulk endosomes before dynamin-dependent fission from the plasma membrane of neurosecretory cells

    Temperature-Sensitive RB Mutations Linked to Incomplete Penetrance of Familial Retinoblastoma in 12 Families

    Get PDF
    SummaryThe tumor-suppressor activity of the retinoblastoma protein (RB) is encoded within a protein-binding (“pocket”) domain that is targeted for mutations in all cases of familial retinoblastoma and in many common adult cancers. Although familial retinoblastoma is a paradigm for a highly penetrant, recessive model of tumorigenesis, the molecular basis for the phenotype of incomplete penetrance of familial retinoblastoma is undefined. We studied the RB pocket-binding properties of three independent, mutant RB alleles that are present in the germline of 12 kindreds with the phenotype of incomplete penetrance of familial retinoblastoma. Each arises from alterations of single codons within the RB pocket domain (designated “Δ480,” “661W,” or “712R”). Under the same conditions, we studied the properties of wild-type (WT) RB, an RB point mutant isolated from a lung carcinoma sample (706F) and an adjacent, in vitro–generated point mutant (707W). The Δ480, 661W, and 712R mutants lack pocket protein-binding activity in vitro but retain the WT ability to undergo cyclin-mediated phosphorylation in vivo. Each of the low-penetrant RB mutants exhibits marked enhancement of pocket protein binding when the cells are grown at reduced temperature. In contrast, in this temperature range, no change in binding activity is seen with WT RB, the 706F mutant, or the 707W mutant. We have demonstrated that many families with incomplete penetrance of familial retinoblastoma carry unstable, mutant RB alleles with temperature-sensitive pocket protein-binding activity. The variable frequency for tumor development in these families may result from reversible fluctuations in a threshold level of RB pocket-binding activity

    Thermal conductivity of organic semi-conducting materials using 3omega and photothermal radiometry techniques

    Get PDF
    Organic semiconductors for opto-electronic devices show several defects which can be enhanced while increasing the operating temperature. Their thermal management and especially the reduction of their temperature are of great interest. For the heat transfer study, one has to measure the thermal conductivity of thin film organic materials. However the major difficulty for this measurement is the very low thickness of the films which needs the use of very specific techniques. In our work, the 3-omega and photothermal radiometric methods were used to measure the thermal conductivity of thin film organic semiconducting material (Alq3). The measurements were performed as function of the thin film thickness from 45 to 785 nm and also of its temperature from 80 to 350 K. With the 3 omega method, a thermal conductivity value of 0.066 W.m−1K−1 was obtained for Alq3 thin film of 200 nm at room temperature, in close agreement with the photothermal value. Both techniques appear to be complementary: the 3 omega method is easier to implement for large temperature range and small thicknesses down to a few tens of nanometers whereas the photothermal method is more suitable for thicknesses over 200nm since it provides additional information such as the thin film volumetric heat capacity
    • 

    corecore